Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

»ýü¿Âµµ¿¡¼­ Àü±âÈ­ÇÐÁõÂø¹ýÀ» ÀÌ¿ëÇÑ Æ¼Å¸´½ »ó ¼ö»êÈ­ÀÎȸ¼® ÄÚÆà ¿¬±¸

Hydroxyapatite Coatings on Titanium Using Electrochemical Deposition Method at Body Fluid Temperature

´ëÇÑÄ¡°úÀç·áÇÐȸÁö 2018³â 45±Ç 3È£ p.221 ~ 232
±è¼öö, Ȳ¹®Áø, À̿, ¹Ú¿µÁØ, ¼ÛÈ£ÁØ,
¼Ò¼Ó »ó¼¼Á¤º¸
±è¼öö ( Kim Su-Chul ) - Àü³²´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úÀç·áÇб³½Ç
Ȳ¹®Áø ( Hwang Moon-Jin ) - ±¤ÁÖ°úÇбâ¼ú¿ø Áß¾Ó¿¬±¸±â±â¼¾ÅÍ
À̿ ( Lee Woon-Young ) - Àü³²´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úÀç·áÇб³½Ç
¹Ú¿µÁØ ( Park Young-Jun ) - Àü³²´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úÀç·áÇб³½Ç
¼ÛÈ£ÁØ ( Song Ho-June ) - Àü³²´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø Ä¡°úÀç·áÇб³½Ç

Abstract

º» ¿¬±¸¿¡¼­´Â »ýü ¿Âµµ¿¡¼­ Àü±âÈ­ÇÐÀû ÁõÂø(Electrochemical deposition;ECD) ¹æ¹ýÀ» ÀÌ¿ëÇÏ¿© ƼŸ´½ »ó¿¡ ¼ö»êÈ­ÀÎȸ¼®(Hydroxyapatite; HAp)À» ÄÚÆÃÇÏ´Â ¹æ¹ýÀ» ¿¬±¸ÇÏ¿´´Ù. 5M NaOH ¿ë¾×À» ÀÌ¿ëÇÏ¿© ¿¡Äª ó¸®µÈ ƼŸ´½ µð½ºÅ© ½ÃÆíµéÀÌ ECD¸¦ À§ÇÏ¿© »ç¿ëµÇ¾ú´Ù. 5mM Ca(NO3)2 ¿Í 2mM NH4H2PO4À» È¥ÇÕÇÏ¿© Á¦Á¶ÇÑ pH 5(E2)ÀÎ ÀüÇØÁúÀ» pH 3(E1)°ú pH 6(E3)À¸·Î °¢°¢ Á¶Á¤ÇÏ¿© ¼¼ Á¾·ùÀÇ ÀüÇØÁúÀ» ÁغñÇÏ¿´´Ù. ƼŸ´½ ½ÃÆí¿¡ ?10, -15, -30 mAÀÇ ´Ù¸¥ Àü·ù¸¦ °®´Â ÆÞ½º¸¦ Àΰ¡ÇÏ¿´À¸¸ç, ÀüÇØÁúÀÇ ¿Âµµ´Â 37 ¡É·Î À¯ÁöÇÏ¿´´Ù. ÀÌ¿Í °°ÀÌ E1-10, E1-15, E1-30, E2-10, E2-15, E2-30, E3-10, E3-15, E3-30 ½ÃÆí±ºÀ» ÁغñÇÏ¿´´Ù. Á¦Á¶µÈ °¢ ½ÃÆíµéÀÇ Ç¥¸é Çü»óÀ» °üÂûÇÑ °á°ú, pH°¡ 3ÀÌ°í 15 mAÀÇ ³·Àº Àü·ù ÇÏ¿¡¼­´Â ÄÚÆÃÀÌ ÀÌ·ç¾îÁöÁö ¾Ê¾ÒÀ¸¸ç, E3-15°ú E3-30 ½ÃÆí¿¡¼­´Â ºÐ¸»ÇüÅÂÀÇ ÄÚÆø·ÀÌ Çü¼ºµÇ¾ú´Ù. pH°¡ 3°ú 5ÀÌ°í 30 mAÀÇ ³ôÀº Àü·ù°¡ Àΰ¡µÈ E1-30°ú E2-30 ½ÃÆí¿¡¼­´Â °Ö ÇüÅÂÀÇ È­ÇÕ¹°ÀÌ ÁõÂøµÇ¾î °ÇÁ¶ ÈÄ °¥¶óÁüÀÌ ¹ß»ýÇÏ¿´´Ù. E2-10, E2-15, E3-10 ½ÃÆí±ºµé¿¡¼­ ±ÕÀÏÇÏ°í ¾ÈÁ¤µÈ ÇüÅÂÀÇ ÄÚÆø·ÀÌ Çü¼ºµÇ¾úÀ¸¸ç, °áÁ¤±¸Á¶ ºÐ¼®À» ÅëÇÏ¿© HAp°¡ ÄÚÆÃµÈ °ÍÀ» È®ÀÎÇÏ¿´´Ù. ƯÈ÷ E2-10 ½ÃÆíÀÌ ´Ù¸¥ ½ÃÆíµé¿¡ ºñÇÏ¿© c-Ãà ¹æÇâÀ¸·Î Á¤·ÄµÇ¾î HAp°¡ ½ÃÆí Ç¥¸é¿¡ Àß ÁõÂøµÇ¾ú´Ù.

In this study, hydroxyapatite (HAp) was coated on titanium using electrochemical deposition (ECD) method at body fluid temperature. The titanium specimens for ECD were prepared by chemically etching treatment using 5M NaOH solution. The electrolyte mixed with 5 mM Ca(NO3)2 and 2 mM NH4H2PO4 which has pH 5 (E2) was adjusted to pH 3 (E1) and pH 6 (E3). The different electric pulses of ?10, -15, -30 mA were applied to each specimen. The temperature of electrolytes was kept at 37 ¡É. E1-10, E1-15, E1-30, E2-10, E2-15, E2-30, E3-10, E3-15, and E3-30 groups were prepared for this study. Scanning electron microscope (SEM) images showed that E1-10 and E1-15 groups were not coated and the powder-shaped compounds were formed on E3-15 and E3-30 groups. The cracks were observed on the surface of E1-30 and E2-30 groups. The evenly and stable coated layer was deposited on E2-10, E2-15 and E3-10 groups. The coating layer coated on titanium surface had an HAp crystalline structure. E1-30 and E2-30 groups had low crystallinity, even though they had thick layer. HAp layer on for E2-10 group was well deposited on the surface because it more aligned to c-axis compared with other groups.

Å°¿öµå

ƼŸ´½; Ç¥¸é°³Áú; ¼ö»êÈ­ÀÎȸ¼®; Àü±âÈ­ÇÐÀûÁõÂø
Titanium,;Surface modification; Hydroxyapatite; Electrochemical deposition

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI